
Re-sequencing hundreds of evolved *E. coli* genomes:

Finding non-SNP mutations, analyzing mixed populations, and knowing what you don't know

Jeffrey E. Barrick Laboratory of Richard E. Lenski Microbiology and Molecular Genetics

MICHIGAN STATE UNIVERSITY

- I2 independent populations evolved >20 yrs.
 Frozen "fossil record" has been archived.
- How many and what mutations?
- Compare rates of genomic change and fitness increase, monitor diversity in the population, understand molecular basis of adaptation.

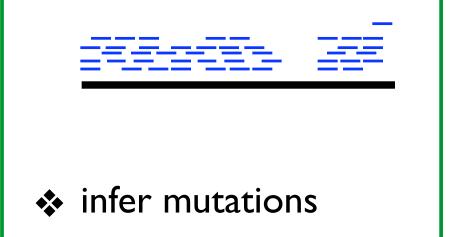
Overview

- Application: **Re-sequencing** *E. coli* genomes
- Platform: Illumina Genome Analyzer
- I. Overview of strategies and sequencing data
- 2. **breseq** ("brēz-sēk") bacterial re-sequencing pipeline
 - characteristics of a typical data set
 - identifying different kinds of mutations
 - analysis of SNPs in a mixed population
- 3. Asking evolutionary questions

Before I forget...

MSU has great resources for genomics

- RTSF thanks Kevin, Shari, Jeff, ... !
- HPCC thanks Ed, Bill, ... !

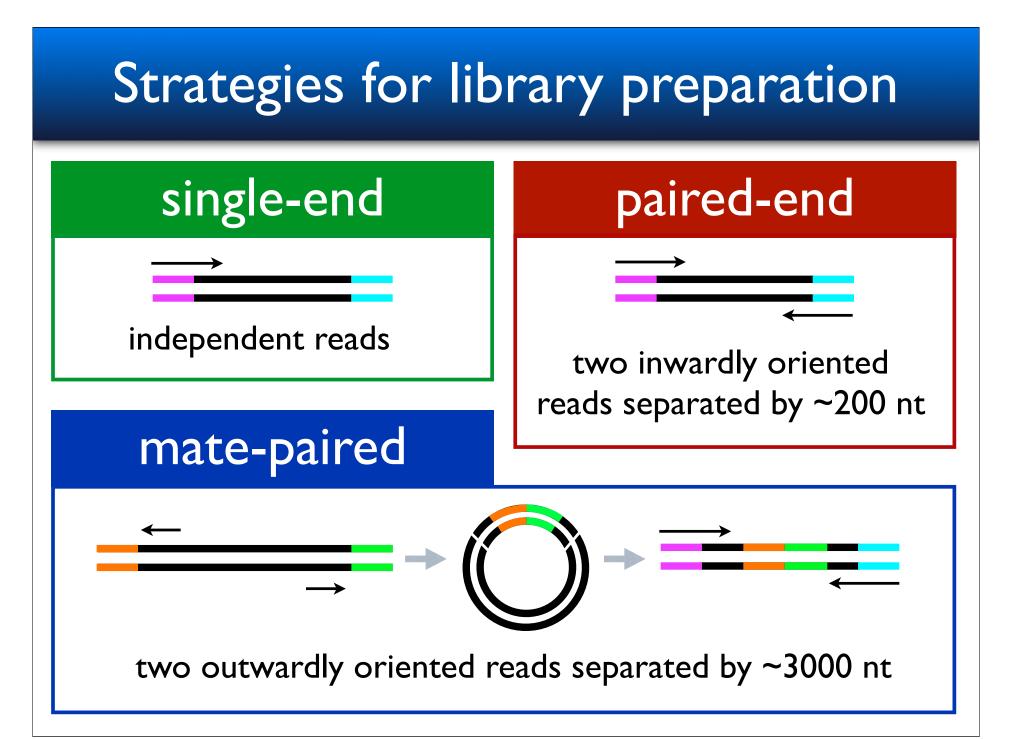

Thanks to the Lenski lab, particularly Brian, Neerja, and Zach.

Thanks to collaborators Jihyun Kim et al. (KRIBB) Dom Schneider et al. (Grenoble) Genoscope

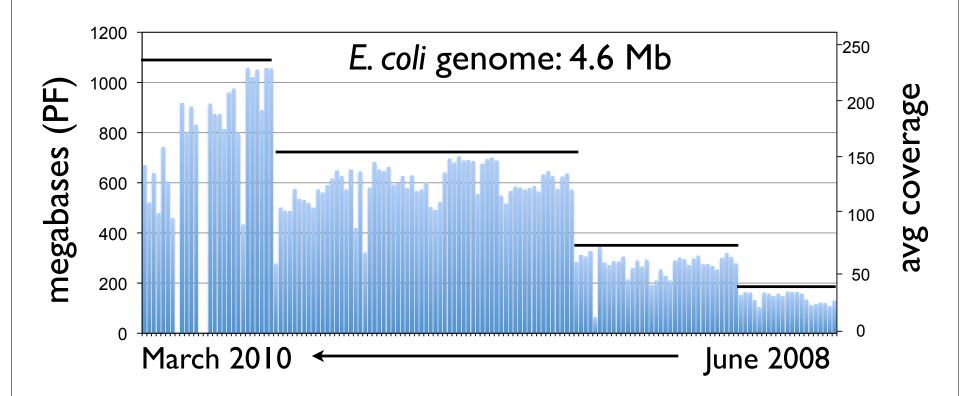
Strategies for finding mutations

re-sequencing

map reads to known reference genome (ssaha2, maq, ...)


de novo assembly

assemble reads by overlap (velvet, ...)



map contigs to reference genome

infer mutations

Sequence Data Sets

I 48 samples at RTSF (shown)I 20 samples at Genoscope with Dom Schneider et al.mostly I lane per genome, 36-bp single-end reads

breseq re-sequencing pipeline

read alignment ssaha2, maq, mummer SAM file of alignments

other tools

mutation identification

breseq

FASTQ

implementation:

- command line tool
- unholy alliance of Perl and R (... and C++)
- emphasis on accuracy over speed
- runs on Unix, HPCC, Mac OS X

- I. single-base substitutions (SNPs)
- 2. small within-alignment indels
- 3. large deletions
- 4. new junctions (IS insertions)
- 5. copy number variation
- 6. mixed population SNP analysis

HTML / PDF / TXT output

SAM: Sequence Alignment/Map format

Text (SAM) and binary (BAM) files organized for quick retrieval of reads aligned to a certain position.

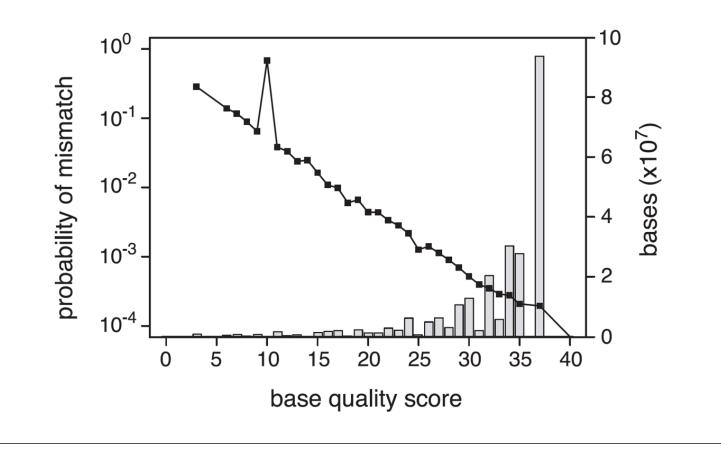
Created to support 1000 Genomes project by a team at the Sanger Center.

SAMtools (<u>http://samtools.sourceforge.net</u>/)

- C library with bindings to Java, Perl, Python, Lisp, etc.
- Command-line tools for manipulation, consensus/ indel calling, viewing alignments as text, ...
- Many aligners output in SAM format (ssaha2, maq)

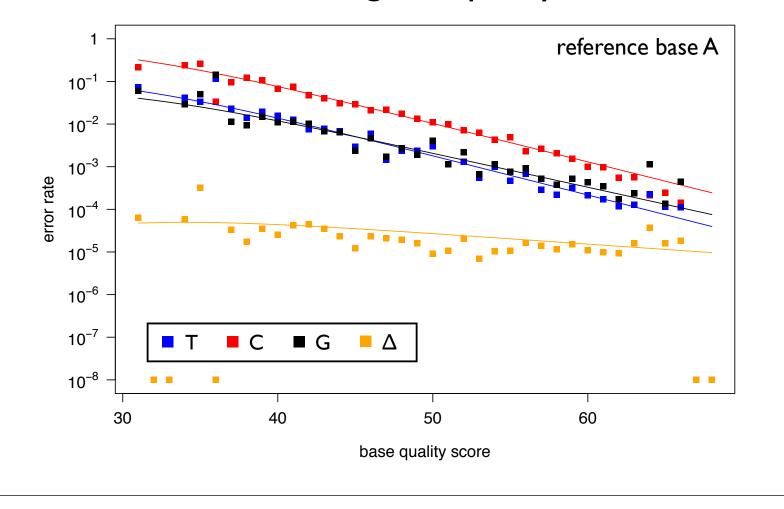
Knowing what you don't know

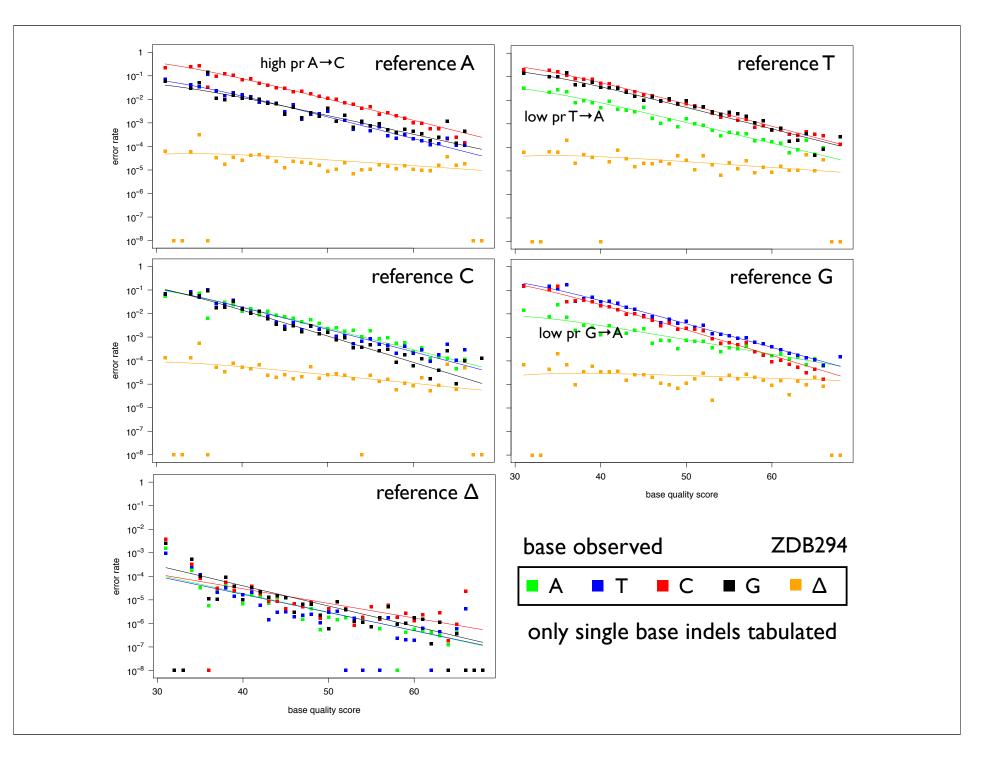
- I. Theoretical limits: Read length and pair distance.
- 2. Practical limits: Base quality and coverage evenness.

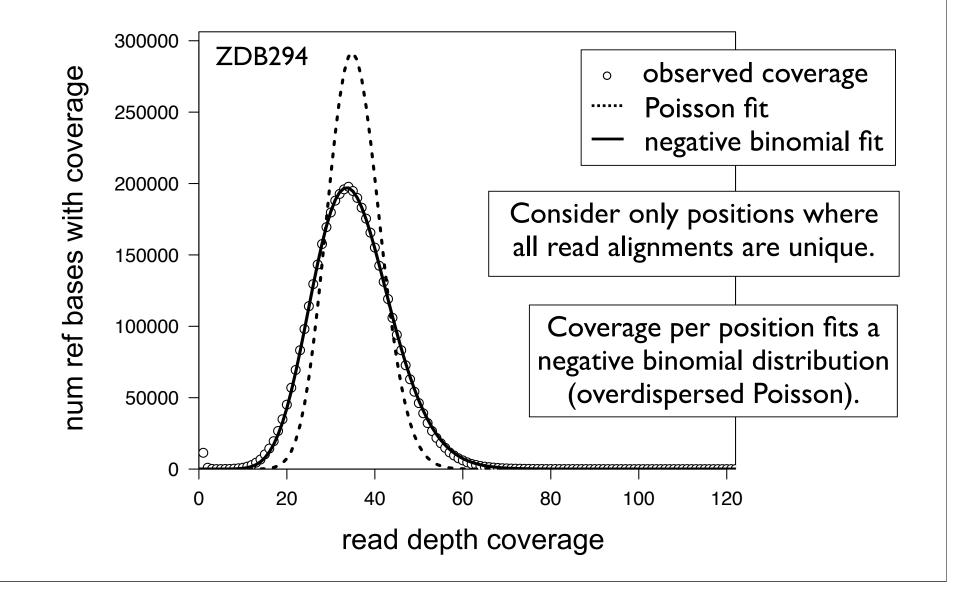

	single-end	paired-end	mate-paired
IS insertions	*	*	*
duplications	*	*	*
inversions across IS	_	—	*
SNPs in repeats	—	—	*
long tandem repeat	s –	—	—

IS = bacterial mobile elements 1.0-1.5 kb in length.

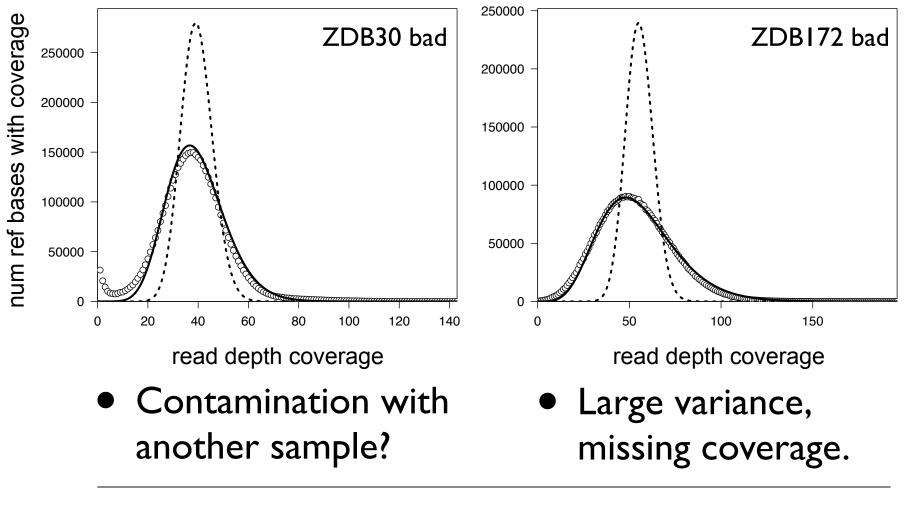
Need standardized metrics to describe completeness of re-sequencing data on a per-base per-genome basis.


Typical Base Error Rates


 Most bases in a run have error frequencies between 10⁻⁴ and 10⁻³. Overall error rates agree well with Phred quality scores [E=10^{-(Q/10)}].


Typical Base Error Spectrum

• There is variation in the frequency at which different base errors occur at a given quality score.



Typical Coverage Distribution

Problem Coverage Distributions

Both apparently from problems with library prep.

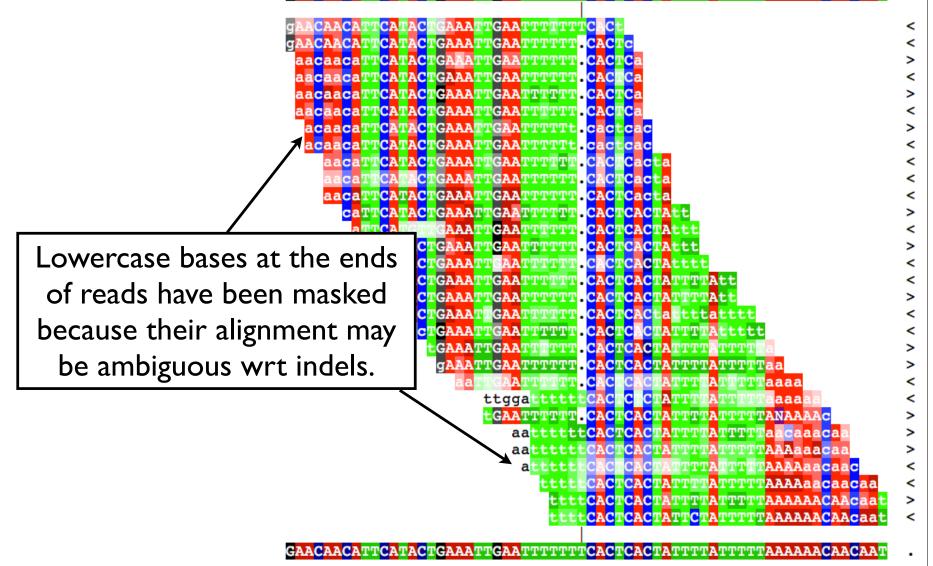
Identifying single-base substitutions

- Calculate probability of best base versus other bases given observed bases and error model.
- Accept as consensus if E-value < 0.01.

S	tart	end	ref	change	quality	cov	tot_cov	type	gene position	codon change	aa change	gene	product
197	5746	1975746	A	Т	22.6	6/5	6/5	substitution	406 (136)				predicted sensory kinase in two-component regulatory system with YedW
TTT	TTTAGCCACAGTAACCGTCAATGATGGCGAAACTTCATCAATATTAATTCGTAAAGCATCAA . REL606/1975717-1975778												
THAGCCACAGTAACCGTCACAGTGCCGTAACTGCATAGTGAAACTGATGATGATGATGACGAGAGAGA											2:2:223:929:597/1-36 2:2:231:655:741/1-36 2:2:158:289:861/1-36 2:2:128:25:297/1-33 2:2:260:706:411/1-36 2:2:203:310:757/1-36 2:2:292:615:658/1-36 2:2:39:584:457/2-36 2:2:125:304:636/1-36		
TTT	A <mark>GCCA</mark>	C <mark>AGTAACC</mark> G	TCA	A <mark>T</mark> GA <mark>T</mark> GGC	C <mark>GAAAC</mark> TT	C <mark>A</mark> TC	AA <mark>T</mark> ATTA	ATT <mark>CGTAAAGC</mark>	A <mark>TC</mark> AA	REL606/	_		
Leg	end:	AT <mark>C</mark> G < 36	≤	A <mark>T</mark> CG < 4	13 ≤ <mark>ATC</mark>	G <	57 ≤ <mark>AT</mark> O	G < 71 ≤ A	CG				

Identifying within-alignment indels

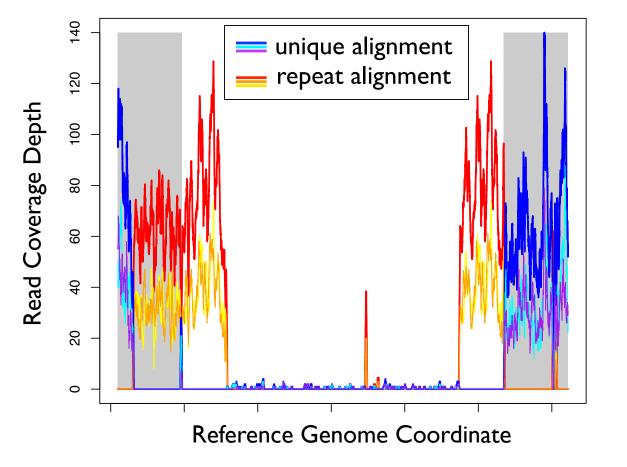
 Need to be careful in repetitive sequences and at the edges of short reads...


TATATTAATGCGCGCGCTAGGCTAGCT TATATTAAT--GCGCGCTAGGCTAGCT < TATATTAATGCGCGC--TAGGCTAGCT >

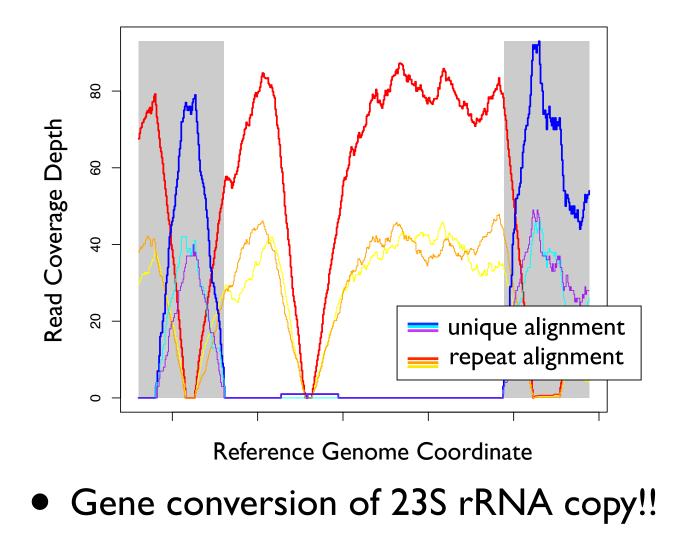
- TATATTAATGCGCGC.....>

...where reads aligned from different directions can be ambiguously aligned.

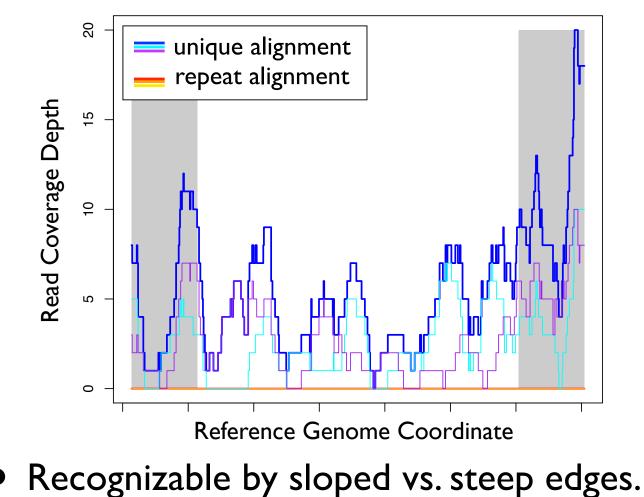
...where reads from different directions that end in a simple sequence repeat may hide indels.


GAACAACA<mark>TT</mark>CATAC<mark>T</mark>GAAATTGAATTTTTTTTCAC<mark>T</mark>CACTATTTTATTTTTAAAAAAACAACAA

Identifying large deletions


- I. Seed deletions at positions with zero coverage.
- 2. Propagate boundaries outward until reaching a readdepth threshold based on the overall distribution.
- 3. Propagate through repeat regions, where a read aligns to multiple places in the genome.

Sometimes the molecular event is obvious...



• Recombination between nearby IS3 copies.

• Sometimes the mutation is not obvious...

• Sometimes overall low or biased coverage leads to false predictions of deletions.

Identifying new junctions

I. Find "mosaic" reads that partially map to two locations in the genome (possibly with overlap).

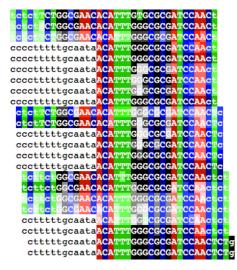
- 2. Create consensus list of possible new junctions.
- 3. Re-align all reads to candidate junctions.

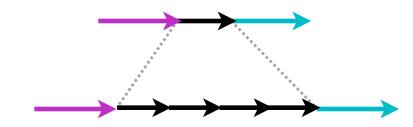
4. Predict a new junction if reads map better to it than to the reference across its whole length.

position	overlap	reads	gene	coords		product
1 =		26	-/thrL	/189	-/thr op	peron leader peptide
= 4629812	0	36	lasT/-	4629789/	predicte	ed rRNA methyltransferase/-
				•		
ATATTGCCCGTTGC	AG <mark>TC</mark> AGAA <mark>T</mark> GAAAA	GCTGAAAAA	ACTTACTAAC	G <mark>C</mark> GTTTTTT <mark>A</mark> TTTGGT	IGA .	REL606_1_1_REL606_4629812_0_0_/3-71
ATATTGCCCGTTGC		COMCA			>	30KR6AAXXLesnki set 1 2:3:53:1076:1729/1-36
ATA TGCCCGTTGC	AGTCAGAATGAAAA	GCTGA			<	30KR6AAXXLesnki_set_1_2:3:3:1045:1537/1-36
ATATTGCCCGTTGC	A <mark>GTC</mark> AGAA <mark>T</mark> GAAAA	GCTGAAA			<	30KR6AAXXLesnki_set_1_2:3:98:1256:1982/1-36
ATATTGCCCGTTGC	A <mark>GTC</mark> AGAATGAAAA	GCTGAAAA			<	30KR6AAXXLesnki_set_1_2:3:69:59:1642/1-36
ATTGCCCGTTGC.	AGTCAGAATGAAAA	GCTGAAAAAT			<	30KR6AAXXLesnki_set_1_2:3:52:1112:1970/1-36
G <mark>CCC</mark> GTTGC	A <mark>GTC</mark> AGAATGAAAA AGTCAGAATGAAAA	GCTGAAAAA	ACT		<	30KR6AAXXLesnki_set_1_2:3:29:260:647/1-36
GCCCGTTGC	AG <mark>TC</mark> AGAA <mark>T</mark> GAAAA	GCTGAAAAA	ACT		<	30KR6AAXXLesnki_set_1_2:3:45:197:1888/1-36
CCGTTGC.	AG <mark>TC</mark> AGAA <mark>T</mark> GAAAA	GCTGAAAAA	ACTTA		<	30KR6AAXXLesnki_set_1_2:3:38:829:160/1-36
GTTGC.	AG <mark>TC</mark> AGAA <mark>T</mark> GAAAA	GCTGAAAAAT	ACTTACT		>	30KR6AAXXLesnki_set_1_2:3:82:996:256/1-36
GTTGC.	AGTCAGAATGAAAA AGTCAGAATGAAAA	GCTGAAAAA	ACTTACT		<	30KR6AAXXLesnki_set_1_2:3:88:199:234/1-36
G <mark>TI</mark> GC.	A <mark>GTC</mark> AGAA <mark>TG</mark> AAAA	GC <mark>TG</mark> AAAAA	ACTTACT		>	30KR6AAXXLesnki_set_1_2:3:31:1778:622/1-36
TTGC.	AG <mark>TC</mark> AGAATGAAAA AGTCAGAATGAAAA	GCTGAAAAAT	ACTTACTA		>	30KR6AAXXLesnki_set_1_2:3:21:1481:579/1-36
TTGC.	AG <mark>TC</mark> AGAA <mark>T</mark> GAAAA	G <mark>CT</mark> GAAAAA <mark>T</mark>	ACTTACTA		>	30KR6AAXXLesnki_set_1_2:3:14:1273:59/1-36
TGC.	AGTCAGAATGAAAA AGTCAGAATGAAAA	G <mark>CT</mark> GAAAAAT	ACTTACTAA		<	30KR6AAXXLesnki_set_1_2:3:54:842:43/1-36
TGC.	AG <mark>TC</mark> AGAA <mark>T</mark> GAAAA	GCTGAAAAAT	ACTTACTAA		>	30KR6AAXXLesnki_set_1_2:3:82:844:525/1-36
G <mark>C</mark> .	AG <mark>TCA</mark> GAA <mark>T</mark> GAACA	G <mark>CT</mark> GAAAAAT	ACTTACTAAG		>	30KR6AAXXLesnki_set_1_2:3:30:6:1419/1-36
GC.	AG <mark>TC</mark> AGAATGAAAA AGT <mark>C</mark> AGAATGAAAA	GCTGAAAAA	ACTTACTAAC		<	30KR6AAXXLesnki_set_1_2:3:23:1578:360/1-36
	AG <mark>TC</mark> AGAA <mark>T</mark> GAAAA	GCTGAAAAGT	ACTTACTAAG	GC	>	30KR6AAXXLesnki_set_1_2:3:65:1765:1077/1-36
	A <mark>GT</mark> CAGAATGAAAA CAGAATGAAAA	GCTGAAAAAT	ACTTACTAAG	GC	>	30KR6AAXXLesnki_set_1_2:3:62:1360:759/1-36
	CAGAATGAAAA	GCTGAAAAAT	ACTTACTAAC	GCGTT	<	30KR6AAXXLesnki_set_1_2:3:65:842:32/1-36
	AGAATGAAAA GAATGAAAA	GCTGAAAAAT	ACTTACTAAC	GCGTTT	>	30KR6AAXXLesnki_set_1_2:3:3:1093:1221/1-36
	GAATGAAAA	GCTGAAAAAT	ACTTACTAAG	GCGTTTT	>	30KR6AAXXLesnki_set_1_2:3:13:204:1274/1-36
	ATGAAAA	GCTGAAAAA	ACTTACTAAG	GCGTTTTTT	<	30KR6AAXXLesnki_set_1_2:3:8:699:65/1-36
	ATGAAAA	GCTGAAAAA	ACTTACTAAC	GCGTTTTTTTA	>	30KR6AAXXLesnki_set_1_2:3:81:1575:760/1-36
	GAAAA	GCTGAAAAA		GCGTTTTTTA	<	30KR6AAXXLesnki_set_1_2:3:57:387:423/1-36
	AAAA A A A	GCTGAAAAAI		GCGTTTTTTATT GCGTTTTTTATT	>	30KR6AAXXLesnki_set_1_2:3:19:601:1470/1-36 30KR6AAXXLesnki_set_1_2:3:71:503:526/1-36
	222	COTCAAAAA	ACTTACTAAG	CCCmmmmmmmmmmmmmm	>	30KR6AAXXLesnki set 1 2:3:29:1139:1664/1-36
	A A A	CCTCA A A A A		GCGTTTTTTT <mark>A</mark> TTT	<	30KR6AAXXLesnki_set_1_2:3:71:505:527/1-36
	222	CCTCAAAAAA	ACTTACTAA		>	30KR6AAXXLesnki_set_1_2:3:18:1079:1002/1-36
			ACTTACTAAC		<	30KR6AAXXLesnki_set_1_2:3:6:1485:1308/1-36
			ACTTACTAAC		<	30KR6AAXXLesnki_set_1_2:3:24:627:931/1-36
				GCGTTTTTTTATTTGt	>	30KR6AAXXLesnki_set_1_2:3:92:145:1544/1-35
	-	GCTGAAAAAT	ACTTACTAAC	GCGTTTTTTTATTTGG	5	30KR6AAXXLesnki set 1 2:3:58:1720:1463/1-36
		TGAAAAA	ACTTACTAAG		30KR6AAXXLesnki set 1 2:3:86:300:312/1-36	
		TGAAAAA	ACTTACTAAG	GCGTTTTTTATTGG1	G <mark>A</mark> >	30KR6AAXXLesnki_set_1_2:3:41:1600:1707/1-36
ATATTGCCCGTTGC.						

• Beware of reads ending in homopolymer runs!

position	overlap	full / total reads	gene	coords	product
= 489705			ybbN	490447-489593	predicted thioredoxin domain-containing protein
3912264 =	0	7 / 14	ilvL/ilvG	3912221/3912359	ilvG operon leader peptide/acetolactate synthase II, valine insensitive, large subunit

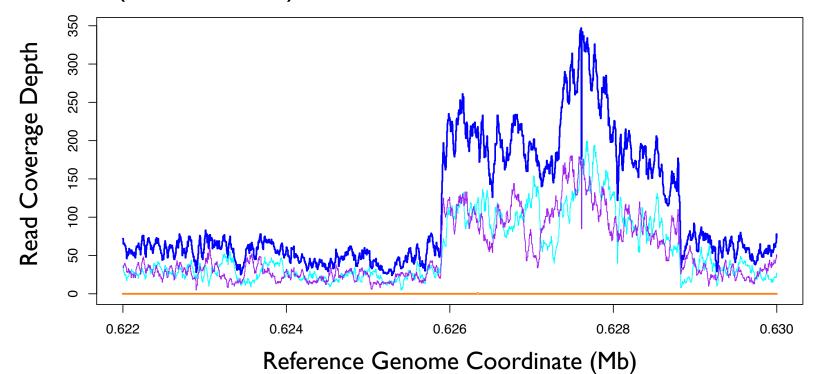

G <mark>AA</mark> CGTTTTACGCGTCTG <mark>ACCGTCTGCGGC</mark> •GG	- REL606/489674-489705
GGGGG <mark>TTTTTTT</mark> G <mark>ACC</mark> TT	REL606/3912264-3912283
CGCGTCTGACCGTCTGCGGC.GGGGGGTTTTTTTCC	- 30KR6AAXXLesnki_set_1_2:2:8:1611:1595
AGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	C 30KR6AAXXLesnki_set_1_2:2:10:658:1121
TCTGACCGTCTGCGGC GGGGGGGTTTTTTTGAGGT-	- 30KR6AAXXLesnki_set_1_2:2:13:1672:83
GGGGGGGTT <mark>TTTTCTCTGACCGTCTGCGGCC</mark> _GGGGGGGTT <mark>TTTTTCTT</mark> CT	- 30KR6AAXXLesnki_set_1_2:2:16:1338:1584
- <mark>AACGTTTTACGCGTCTGACCGTCTGCGGC</mark> _GGGGGGG	- 30KR6AAXXLesnki_set_1_2:2:29:1395:930
<mark>TTTTAC</mark> G <mark>CGTCTGACCGTCTGC</mark> G <mark>GC .</mark> GGGGGGGTGTT	- 30KR6AAXXLesnki_set_1_2:2:30:1685:1502
<mark>ACGTTTTACGCGTCTGACCGT</mark> CTGCGG <mark>C</mark> _GGGGGGGT	- 30KR6AAXXLesnki_set_1_2:2:33:1415:263
<mark>TTTT<mark>ACGCGTC</mark>TG<mark>ACCGTCTGCGGC</mark>_GGGGGGTTT<mark>T</mark></mark>	- 30KR6AAXXLesnki_set_1_2:2:37:666:557
- <mark>AACGTTTTACGCGTC</mark> TG <mark>ACCG</mark> I <mark>CT</mark> GCGGC .GGGGGGGG	- 30KR6AAXXLesnki_set_1_2:2:46:717:825
TTACTGGCTTTTGCAC <mark>C</mark> GGCGGGGGGTTTTTTTT	- 30KR6AAXXLesnki_set_1_2:2:59:1018:1338
<mark>CGTTTTACGCGTCTGACC</mark> GT <mark>CTGCGGC</mark> _GGGGGGGTT	- 30KR6AAXXLesnki_set_1_2:2:65:262:1990
CAACGTTTTACGCGTCTGACCGTCTGCGGC .GGGGGGG	- 30KR6AAXXLesnki_set_1_2:2:76:1050:1507
TACCCCTCTCACCCTCTCCCGCCCCCCCCCCCCCC	- 30KR6AAXXLesnki_set_1_2:2:87:1336:724
<mark>TTTT<mark>ACGCGTC</mark>TG<mark>ACCGT</mark>CTG<mark>CGGC</mark>_GGGGGGGTCTT</mark>	- 30KR6AAXXLesnki_set_1_2:2:99:618:1322


Base Quality Score Legend: $ATCG < 22 \leq ATCG < 28 \leq ATCG < 34 \leq ATCG$

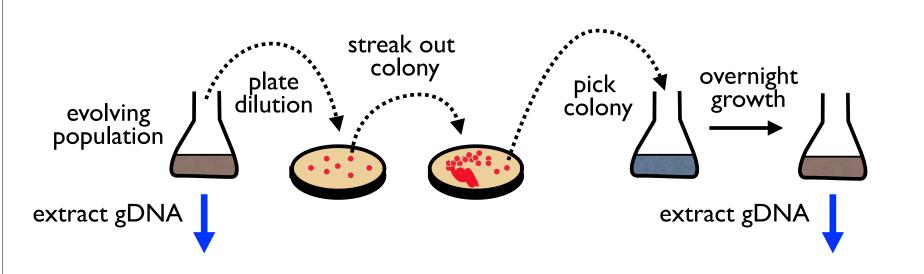
• IS insertions create two new junctions...

		position	overlap	reads	gene	coords	product
		16989			IS150 (+)	+1443 (+3) bp	
*	?	16990 =	0	44	mokC/nhaA		regulatory protein for HokC, overlaps CDS of hokC/pH-dependent sodium/proton antiporter
	2	= 3652533			IS150	3651091-3652533	repeat region
*	?	= 16992	0	41	mokC/nhaA		regulatory protein for HokC, overlaps CDS of hokC/pH-dependent sodium/proton antiporter
	<u>?</u>	<u>?</u> 3893554 =		IS150	3893554-3894996	repeat region	

• Sometimes new and old junctions both exist...



tandem head-to-tail duplications


Identifying copy number variation

• Coverage is very noisy, but a fingerprint is (somewhat) consistent across runs.

• Tile into 100 bp segments, train bg model on many genomes, look for deviation (in progress).

Mixed population analysis

Every read could be from any individual.

Frequencies of mutations competing in population.

No linkage information.

All reads are from a single clone.

Information about which mutations occur together.

Sequencing error or polymorphism?

• Map reads to ancestor genome. Only consider single-base substitutions.

Ref

Aligned reads

TAG

TCG >

T<mark>A</mark>G <

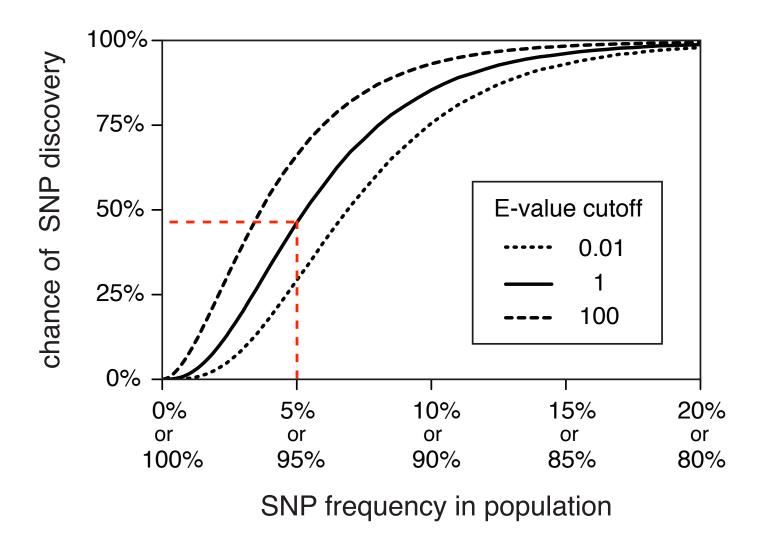
T<mark>A</mark>G >

TCG >

TCG >

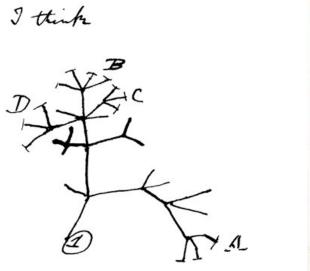
T<mark>A</mark>G <

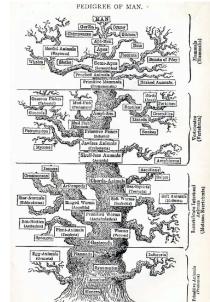
TCG >


TCG >

 Log-likelihood test for polymorphism: TAG >

Pr (obs | no polymorphism, i.e. all error) $T_{CG} > D = -2 \ln -$ Pr (obs | ML fraction new allele)


- Clone sequence data serves as a negative control (all errors, no polymorphisms).
- Filter out predictions with other biases: TCG > T<mark>A</mark>G > strand bias, systematically low quality scores T<mark>A</mark>G <


Sensitivity estimate

Asking Evolutionary Questions

• A list of *mutational events* in many clones over time, allows inference of evolutionary history.

 Later events may sometimes hide earlier events. (e.g. SNP in region that is later deleted)

Genome diff files

- For studying evolution we are interested in mutational events (essentially genome diffs).
- To submit a changed genome sequence to GenBank you must currently re-submit the entire genome even if it has only a one base difference.
- Supplementary tables are not a sustainable or standardized way to report this data.
- Ideal genome diff format would also allow reporting of what is not known, frequency information for mixed population samples, and quality metrics.

Where are things going

- Re-sequencing will be used to routinely check mutant constructs. (\$1000 human = \$1 E. coli)
- De novo assembly will become more common, as technologies with longer read lengths come online.
- Studies of within-host diversity of virus populations and genetic diversity of neoplastic tumors.
- Every strain in the Lenski freezer will be sequenced (11,000 to go)...

...you have any ideas for better analysis strategies.

...you want to run **breseq** on the HPCC.

...you want any sample FASTQ datasets to analyze.

Search "Lenski" in Short Read Archive (SRA) <u>http://www.ncbi.nlm.nih.gov/sra</u>

For more information...

- 1. Barrick, J.E. et al. Genome evolution and adaptation in a long-term experiment with *Escherichia coli*. *Nature* **461**, 1243-1247 (2009).
- 2. Barrick, J.E. & Lenski, R.E. Genome-wide mutational diversity in an evolving population of *Escherichia coli*. *Cold Spring Harbor Symp. Quant. Biol.* **74**, ePub Sept. 23, 2009 (2009).