
Re-sequencing hundreds of 
evolved E. coli genomes:

 Finding non-SNP mutations, 
analyzing mixed populations, and
knowing what you don't know
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Lenski long-term evolution experiment

❖ 12 independent populations evolved >20 yrs. 
Frozen “fossil record” has been archived.

❖ How many and what mutations?

❖ Compare rates of genomic change and fitness 
increase, monitor diversity in the population, 
understand molecular basis of adaptation.
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• Application: Re-sequencing E. coli genomes

• Platform: Illumina Genome Analyzer

1. Overview of strategies and sequencing data

2. breseq (“brēz-sēk”) bacterial re-sequencing pipeline

• characteristics of a typical data set

• identifying different kinds of mutations

• analysis of SNPs in a mixed population

3. Asking evolutionary questions

Overview



Before I forget...

• RTSF – thanks Kevin, Shari, Jeff, ... !
• HPCC – thanks Ed, Bill, ... !

MSU has great resources for genomics

Thanks to the Lenski lab, particularly
     Brian, Neerja, and Zach.

Thanks to collaborators 
     Jihyun Kim et al. (KRIBB)
     Dom Schneider et al. (Grenoble)
     Genoscope



Strategies for finding mutations

de novo assembly

❖ assemble reads by 
overlap (velvet, ...)

❖ map contigs to 
reference genome

❖ infer mutations

re-sequencing

❖ map reads to known 
reference genome
(ssaha2, maq, ...)

❖ infer mutations



Strategies for library preparation

paired-endsingle-end

mate-paired

independent reads
two inwardly oriented 

reads separated by ~200 nt

two outwardly oriented reads separated by ~3000 nt
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March 2010 June 2008

120 samples at Genoscope with Dom Schneider et al.

mostly 1 lane per genome, 36-bp single-end reads



FASTQ

breseq

ssaha2, maq, 
mummer

SAM file of 
alignments

other tools

1. single-base substitutions (SNPs)
2. small within-alignment indels
3. large deletions
4. new junctions (IS insertions)
5. copy number variation
6. mixed population SNP analysis

implementation:
• command line tool
• unholy alliance of Perl 

and R (... and C++)
• emphasis on accuracy 

over speed
• runs on Unix, HPCC, 

Mac OS X

breseq re-sequencing pipeline

mutation annotation

mutation identification

read alignment

HTML / PDF / TXT output



SAMtools (http://samtools.sourceforge.net/)

Created to support 1000 Genomes project by a 
team at the Sanger Center.

• C library with bindings to Java, Perl, Python, Lisp, etc.
• Command-line tools for manipulation, consensus/

indel calling, viewing alignments as text, ... 
• Many aligners output in SAM format (ssaha2, maq)

Text (SAM) and binary (BAM) files organized for 
quick retrieval of reads aligned to a certain position.

SAM: Sequence Alignment/Map format



1. Theoretical limits: Read length and pair distance.
2. Practical limits: Base quality and coverage evenness.

Knowing what you don’t know

IS insertions
duplications
inversions across IS
SNPs in repeats
long tandem repeats

paired-endsingle-end mate-paired

Need standardized metrics to describe completeness of 
re-sequencing data on a per-base per-genome basis.

IS = bacterial mobile elements 1.0-1.5 kb in length.
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• Most bases in a run have error frequencies 
between 10–4 and 10–3. Overall error rates agree 
well with Phred quality scores [ E=10–(Q/10) ].

Typical Base Error Rates



• There is variation in the frequency at which different 
base errors occur at a given quality score.

Typical Base Error Spectrum
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Typical Coverage Distribution
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Coverage per position fits a 
negative binomial distribution 

(overdispersed Poisson).

read depth coverage
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Consider only positions where 
all read alignments are unique.

observed coverage
Poisson fit
negative binomial fit



Problem Coverage Distributions
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• Large variance, 
missing coverage.

• Contamination with 
another sample?

Both apparently from problems with library prep.



• Calculate probability of best base versus other 
bases given observed bases and error model. 

• Accept as consensus if E-value < 0.01.

• Otherwise mark position as “unknown”

Identifying single-base substitutions 



• Need to be careful in repetitive sequences and 
at the edges of short reads...

Identifying within-alignment indels

TATATTAATGCGCGCGCTAGGCTAGCT
TATATTAAT--GCGCGCTAGGCTAGCT <
TATATTAATGCGCGC--TAGGCTAGCT >
TATATTAATGCGCGC............ >
...........GCGCGCTAGGCTAGCT <

...where reads from different directions that end 
in a simple sequence repeat may hide indels.

...where reads aligned from different directions 
can be ambiguously aligned.



Example of a breseq prediction

Lowercase bases at the ends 
of reads have been masked 

because their alignment may 
be ambiguous wrt indels.



1. Seed deletions at positions with zero coverage.

2. Propagate boundaries outward until reaching a read-
depth threshold based on the overall distribution.

3. Propagate through repeat regions, where a read 
aligns to multiple places in the genome.

Identifying large deletions
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Example of a breseq prediction

• Sometimes the molecular event is obvious...

• Recombination between nearby IS3 copies.
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Example of a breseq prediction
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• Sometimes the mutation is not obvious...

• Gene conversion of 23S rRNA copy!!
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Example of a breseq prediction

• Sometimes overall low or biased coverage 
leads to false predictions of deletions.

• Recognizable by sloped vs. steep edges.
Reference Genome Coordinate
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1. Find “mosaic” reads that partially map to two 
locations in the genome (possibly with overlap).

2. Create consensus list of possible new junctions.

3. Re-align all reads to candidate junctions.

4. Predict a new junction if reads map better to it 
than to the reference across its whole length.

Identifying new junctions



Example of a breseq prediction



Example of a breseq prediction

• Beware of reads ending in homopolymer runs!



Example of a breseq prediction

• IS insertions create two new junctions...

• Sometimes new and old junctions both exist...

tandem head-to-tail duplications



Identifying copy number variation
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• Coverage is very noisy, but a fingerprint is 
(somewhat) consistent across runs.

• Tile into 100 bp segments, train bg model on 
many genomes, look for deviation (in progress).



Mixed population analysis

overnight
growth

plate 
dilution

streak out
 colony

pick
 colonyevolving 

population

All reads are from a 
single clone.

extract gDNA

Every read could be 
from any individual.

extract gDNA

Frequencies of mutations 
competing in population.

No linkage information.

Information about which 
mutations occur together.



• Clone sequence data serves as a negative 
control (all errors, no polymorphisms).

Sequencing error or polymorphism? 
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• Log-likelihood test for polymorphism: 

Pr (obs | no polymorphism, i.e. all error)

Pr (obs | ML fraction new allele)
D = -2 ln

• Map reads to ancestor genome. 
Only consider single-base substitutions.

• Filter out predictions with other biases: 
strand bias, systematically low quality scores
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Asking Evolutionary Questions

• A list of mutational events in many clones over 
time, allows inference of evolutionary history.

• Later events may sometimes hide earlier events.
(e.g. SNP in region that is later deleted)



Genome diff files

• For studying evolution we are interested in 
mutational events (essentially genome diffs).

• To submit a changed genome sequence to GenBank 
you must currently re-submit the entire genome – 
even if it has only a one base difference.

• Supplementary tables are not a sustainable or 
standardized way to report this data. 

• Ideal genome diff format would also allow reporting 
of what is not known, frequency information for 
mixed population samples, and quality metrics.



Where are things going

• Re-sequencing will be used to routinely check 
mutant constructs. ($1000 human = $1 E. coli)

• De novo assembly will become more common, as 
technologies with longer read lengths come online. 

• Studies of within-host diversity of virus populations 
and genetic diversity of neoplastic tumors.

• Every strain in the Lenski freezer will be 
sequenced (11,000 to go)...



Search “Lenski” in Short Read Archive (SRA) 
http://www.ncbi.nlm.nih.gov/sra

...you want to run breseq on the HPCC.

1.! Barrick, J.E. et al. Genome evolution and adaptation in a long-term 
experiment with Escherichia coli. Nature 461, 1243-1247 (2009).

2.! Barrick, J.E. & Lenski, R.E. Genome-wide mutational diversity in an evolving 
population of Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 74, 
ePub Sept. 23, 2009 (2009).

For more information...

Please let me know if...

...you want any sample FASTQ datasets to analyze.

...you have any ideas for better analysis strategies.


